TUGAS LOGIKA INFORMATIKA
Latihan
soal
Buktikan
bahwa ekspresi-ekspresi logika berikut ini ekuivalen dengan menggunakan tabel
kebenaran
1. ¬A
↔ B ≡ ( ¬A ˅ B) ˄ ( ¬B ˅ A )
2. A
→ ( ¬A → B ) ≡ 1
3. (A
˅ ¬B ) → C ≡ ( ¬A ˄ B ) ˅ C
4. A
→ ( B → C ) ≡ ( A → B ) → C
5. A
→ B ≡ ¬ ( A ˄ ¬ B )
JAWABAN
1. ¬A
↔ B ≡ ( ¬A ˅ B) ˄ ( ¬B ˅ A )
¬A ↔ B ≡ ( A → B ) ˄ ( B → A ) Hukum Implikasi
¬A ↔ B ≡ A ↔
B Hukum
Biimplikasi
A
|
B
|
¬A
|
¬B
|
( ¬A ˅ B )
|
( ¬B ˅ A )
|
( ¬A ˅ B ) ˄ ( ¬B ˅ A )
|
A ↔ B
|
T
|
T
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
T
|
F
|
F
|
F
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
T
|
2. A
→ ( ¬A → B ) ≡ 1
A
|
B
|
¬A
|
( ¬A → B )
|
A → ( ¬A → B )
|
T
|
T
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
3. (A
˅ ¬B ) → C ≡ ( ¬A ˄ B ) ˅ C
A
|
B
|
C
|
¬A
|
¬B
|
A ˅ ¬B
|
¬A ˄ B
|
(A ˅ ¬B ) → C
|
(
¬A ˄ B ) ˅ C
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
T
|
F
|
T
|
F
|
T
|
T
|
F
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
F
|
F
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
T
|
F
|
T
|
F
|
T
|
F
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
T
|
F
|
F
|
F
|
4. A
→ ( B → C ) ≡ ( A → B ) → C
A
|
B
|
C
|
A → B
|
B → C
|
( A → B) →C
|
A→(B→C)
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
F
|
F
|
T
|
F
|
T
|
F
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
T
|
F
|
T
|
T
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
T
|
5. A
→ B ≡ ¬ ( A ˄ ¬ B )
A → B ≡ ¬ A
˄ B Hukum
De Morgan
A → B ≡ A → B Hukum Implikasi
A
|
B
|
¬A
|
¬B
|
( A ˄ ¬ B )
|
¬
( A ˄ ¬ B )
|
A → B
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
T
|
Komentar
Posting Komentar